پیدايش مثلثات

پیدايش مثلثات

تاريخ علم به آدمى يارى مى رساند تا «دانش» را از «شبه دانش» و «درست» را از «نادرست» تشخيص دهد و در بند خرافه و موهومات گرفتار نشود. در ميان تاريخ علم، تاريخ رياضيات و سرگذشت آن در بين اقوام مختلف ، مهجور واقع شده و به رغم اهميت زياد، از آن غافل مانده اند. در نظر داريم در اين فضاى اندك و در حد وسعمان برخى از حقايق تاريخى( به خصوص در مورد رشته رياضيات) را برايتان روشن و اهميت زياد رياضى و تاريخ آن را در زندگى روزمره بيان كنيم.

براى بسيارى از افراد پرسش هايى پيش مى آيد كه پاسخى براى آن ندارند: چه شده است كه محيط دايره يا زاويه را با درجه و دقيقه و ثانيه و بخش هاى شصت  شصتى اندازه مى گيرند؟ چرا رياضيات با كميت هاى ثابت ادامه نيافت و به رياضيات با كميت هاى متغير روى آوردند؟ مفهوم تغيير مبناها در عدد نويسى و عدد شمارى از كجا و به چه مناسبت آغاز شد؟ يا چرا در سراسر جهان عدد نويسى در مبناى ۱۰ را پذيرفته اند، با اينكه براى نمونه عدد نويسى در مبناى ۱۲ مى تواند به ساده تر شدن محاسبه ها كمك كند؟ رياضيات از چه بحران هايى گذشته و چگونه راه خود را به جلو گشوده است؟ چرا جبر جانشين حساب شد، چه ضرورت هايى موجب پيدايش چندجمله اى هاى جبرى و معادله شد؟ و… براى يافتن پاسخ هاى اين سئوالات و هزاران سئوال مشابه ديگر در كليه رشته ها، تلاش مى كنيم راه را نشان دهيم، پيمودن آن با شماست…

از نامگذارى «مثلثات» مى توان حدس زد كه اين شاخه از رياضيات دست كم در آغاز پيدايش خود به نحوى با «مثلث» و مسئله  هاى مربوط به مثلث بستگى داشته است. در واقع پيدايش و پيشرفت مثلثات را بايد نتيجه اى از تلاش هاى رياضيدانان براى رفع دشوارى هاى مربوط به محاسبه هايى دانست كه در هندسه روبه روى دانشمندان بوده است. در ضمن دشوارى هاى هندسى، خود ناشى از مسئله  هايى بوده است كه در اخترشناسى با آن روبه رو مى شده اند و بيشتر جنبه محاسبه اى داشته اند. در اخترشناسى اغلب به مسئله   هايى بر مى خوريم كه براى حل آنها به مثلثات و دستورهاى آن نيازمنديم. ساده ترين اين مسئله  ها، پيدا كردن يك كمان دايره (بر حسب درجه) است، وقتى كه شعاع دايره و طول وتر اين كمان معلوم باشد يا برعكس، پيدا كردن طول وترى كه طول شعاع دايره و اندازه كمان معلوم باشد. مى دانيد سينوس يك كمان از لحاظ قدر مطلق برابر با نصف طول وتر دو برابر آن كمان است. همين تعريف ساده اساس رابطه بين كمان ها و وترها را در دايره تشكيل مى دهد و مثلثات هم از همين جا شروع شد. كهن ترين جدولى كه به ما رسيده است و در آن طول وترهاى برخى كمان ها داده شده است متعلق به هيپارك، اخترشناس سده دوم ميلادى است و شايد بتوان تنظيم اين جدول را نخستين گام در راه پيدايش مثلثات دانست. منه لائوس رياضيدان و بطلميوس اخترشناس (هر دو در سده دوم ميلادى) نيز در اين زمينه نوشته هايى از خود باقى گذاشته اند. ولى همه كارهاى رياضيدانان و اخترشناسان يونانى در درون هندسه انجام گرفت و هرگز به مفهوم هاى اصلى مثلثات نرسيدند. نخستين گام اصلى به وسيله آريابهاتا، رياضيدان هندى سده پنجم ميلادى برداشته شد كه در واقع تعريفى براى نيم وتر يك كمان _يعنى همان سينوس- داد. از اين به بعد به تقريب همه كارهاى مربوط به شكل گيرى مثلثات (چه در روى صفحه و چه در روى كره) به وسيله دانشمندان ايرانى انجام گرفت. خوارزمى نخستين جدول هاى سينوسى را تنظيم كرد و پس از او همه رياضيدانان ايرانى گام هايى در جهت تكميل اين جدول ها و گسترش مفهوم هاى مثلثاتى برداشتند. مروزى جدول سينوس ها را تقريبا ۳۰ درجه به ۳۰ درجه تنظيم كرد و براى نخستين بار به دليل نيازهاى اخترشناسى مفهوم تانژانت را تعريف كرد. جدى ترين تلاش ها به وسيله ابوريحان بيرونى و ابوالوفاى بوزجانى انجام گرفت كه توانستند پيچيده ترين دستورهاى مثلثاتى را پيدا كنند و جدول هاى سينوسى و تانژانتى را با دقت بيشترى تنظيم كنند. ابوالوفا با روش جالبى به يارى نابرابرى ها توانست مقدار سينوس كمان ۳۰ دقيقه را پيدا كند و سرانجام خواجه نصيرالدين طوسى با جمع بندى كارهاى دانشمندان ايرانى پيش از خود نخستين كتاب مستقل مثلثات را نوشت. بعد از طوسى، جمشيد كاشانى رياضيدان ايرانى زمان تيموريان با استفاده از روش زيبايى كه براى حل معادله درجه سوم پيدا كرده بود، توانست راهى براى محاسبه سينوس كمان يك درجه با هر دقت دلخواه پيدا كند. پيشرفت بعدى دانش مثلثات از سده پانزدهم ميلادى و در اروپاى غربى انجام گرفت. يك نمونه از مواردى كه ايرانى بودن اين دانش را تا حدودى نشان مى دهد از اين قرار است: رياضيدانان ايرانى از واژه «جيب» (واژه عربى به معنى «گريبان») براى سينوس و از واژه «جيب تمام» براى كسينوس استفاده مى كردند. وقتى نوشته هاى رياضيدانان ايرانى به ويژه خوارزمى به زبان لاتين و زبان هاى اروپايى ترجمه شد، معناى واژه «جيب» را در زبان خود به جاى آن گذاشتند: سينوس. اين واژه در زبان فرانسوى همان معناى جيب عربى را دارد. نخستين ترجمه از نوشته هاى رياضيدانان ايرانى كه در آن صحبت از نسبت هاى مثلثاتى شده است، ترجمه اى بود كه در سده دوازدهم ميلادى به وسيله «گرادوس كره مونه سيس» ايتاليايى از عربى به لاتينى انجام گرفت و در آن واژه سينوس را به كار برد. اما درباره ريشه واژه «جيب» دو ديدگاه وجود دارد: «جيا» در زبان سانسكريت به معناى وتر و گاهى «نيم وتر» است. نخستين كتابى كه به وسيله فزازى (يك رياضيدان ايرانى) به دستور منصور خليفه عباسى به زبان عربى ترجمه شد، كتابى از نوشته هاى دانشمندان هندى درباره اخترشناسى بود. مترجم براى حرمت گذاشتن به نويسندگان كتاب، «جيا» را تغيير نمى دهد و تنها براى اينكه در عربى بى معنا نباشد، آن را به صورت «جيب» در مى آورد. ديدگاه دوم كه منطقى تر به نظر مى آيد اين است كه در ترجمه از واژه فارسى «جيپ»- بر وزن سيب- استفاده شد كه به معنى «تكه چوب عمود» يا «ديرك» است. نسخه نويسان بعدى كه فارسى را فراموش كرده بودند و معناى «جيپ» را نمى دانستند، آن را «جيب» خواندند كه در عربى معنايى داشته باشد.

منتظر نظر شما دوستان هستم.

مفهوم مجرد و ساختار تجریدی

سلام دوستان. از آپ نکردن دراز مدتم که خسته نشدید. این دفعه می خوام در مورد مفهوم تجرید اطلاعاتی رو بزارم. امیدوارم براتون جذاب باشه.

تجرید (Abstraction) در ریاضیات از فرآیند تشخیص و استخراج یک جوهره و مفهوم ریاضی اصلی، کلّی، و فراگیر شروع می‌شود. چنانچه وجود و حضور این جوهره و مفهوم خاصّ در تک تک موارد جزئی مورد بررسی صادق باشد، امر اختصار و ساده‌تر کردن عبارت را می‌توان با جدا نمودن و حذف جزئیّات گوناگون از این لایه خاصّ ادامه داد.

برای مثال، می‌توان عبارت زیر را در نظر گرفت:

دو میز + دو کتاب + دو قلم + دو لیوان + دو دفتر + دو خط کش + ...

جهت اجراء فرایند تجرید، می‌شود مفهوم دو تا بودن را که در مورد همهء جمله‌ها صدق می‌کند، از میان برداشته و آنرا در لایه‌ی بالاتری قرار داد. عبارت فوق خواهد شد:

دو(میز + کتاب + قلم + لیوان + دفتر + خط کش + ...)

عبارت جدید کوتاه‌تر شده است، و مفهوم کلّی تر عدد دو بودن که در آن مجرّد و مجزا شده، هنوز هم به همهء جملات جزئی در درون پرانتز تعلّق دارد. همین کار را، حالا می شود با اعداد دیگر مثل سه، چهار، پنج، شش، و ... تکرار کرد. پس، تراز و لایه‌ای نو پدیدار گردیده‌است که در آن فقط مفاهیم مجردی به این صورت قرار دارد:

دو، سه، چهار، پنج، شش، ...

از خود می‌پرسیم، حالا چه جوهرهء مشترک کلّی‌تری را می‌شود از این لایهء جدید جدا کرد؟ جواب: مفهوم عامّ‌تر و همه‌جا‌گیر‌تر عدد طبیعی بودن را؛ هر عدد طبیعیی بودن را.

این همان شروع و آغازجبر است. از همین نقطه است که مفهومی مجرّد و ذهنی موسوم به متغیر تولّد می یابد.

یک ساختار مجرد یک دسنه از قواعد، خواص و روابطی است که مستقل از هر شیئ مادی تعریف شده است. ساختارهای مجرد در فلسفه، علم رایانه و ریاضیات مورد مطالعه قرار می گیرند. در حقیقت، ریاضیات مدرن در یک مفهوم خیلی عمومی، مطالعه ساختارهای مجرد تعریف شده است( بوسیله گروه Bourbaki: رجوع کنید به مباحثه در آنجا، در ساختار جبری و همچنین ساختار).

یک ساختار مجرد ممکن است با ( شاید با جند درجه تقریب) یک شیئ مادی یا بیشتر نمایش داده شود. اما ساختار مجرد خودش طوری تعریف شده است که وابسته به خواص هیچ کاربرد خاصی نمی باشد.

 
قواعد شطرنج یک ساختار مجرد هستند، زیرا تعریف آنها مستقل از هر صفحه یا دسته یا نماد شطرنج خاصی است. در این ساختار مجرد، شاه برای مثال، بصورت یک قطعه که میتواند یک خانه به هر طرف حرکت نماید (مگر اینکه آن خانه مورد حمله یک دشمن قرار گرفته باشد) تعریف شده است. یک شاه بصورت یک قطعه قد بلند با یک تاج کوچک روی نوک آن تعریف نشده است، زیرا میتوان آنرا با یک حرف "ش"، یک شکل کامپیوتری، یا با قیافه یک فرمانده مشهور جایگزین کرد. زیرا شطرنج یک ساختار مجرد است، در اصل امکان پذیر است که یک بازی شطرنج را کاملا بصورت فکری بازی کرد ( درصورتیکه شما و حریفتان دارای حافظه بسیار قوی باشید!).

بازیهای صفحه ای دیگر مثل مار و پله و منچ مثالهای دیگری از ساختارهای مجرد هستند. بسیاری از ورزشها، به عبارت دیگر، ساختارهای مجرد نیستند زیرا قواعد آنها به خواص فیزیکی پرتاب، توپ یا دیگر ابزارهای بازی وابستگی دارند.

یک ساختار مجرد یک ساختار غنی تر از یک عقیده یا یک ایده دارد. یک ساختار مجرد بایستی شامل قوانین دقیقی از رفتار باشد تا بتواند برای تعیین اینکه آیا یک کاربرد موردنظر، عملا در تحقیق اینکه انطباق عملی بر ساختار مجرد دارد یا نه، استفاده شود. بدینسان ما میتوانیم بحث نمائیم که چقدر یک حکومت مشخص شایسته مفهوم دموکراسی است، ولی جایی برای مباحثه در مورد اینکه آیا یک حرکت ترتیبی در یک بازی شطرنج مجاز است، نمی باشد.
یک الگوریتم مرتب کردن یک ساختار مجرد است، ولی یک سفارش نه، زیرا به خواص و مقدار اجزاء تشکیل دهنده آن بستگی دارد.

هندسه ی اقلیدسی یک ساختار مجرد است، ولی تئوری حرکت قاره ای نه، زیرا به زمین شناسی زمین بستگی دارد.

یک صدای موسیقی ساده یک ساختار مجرد است، ولی یک تنظیم آهنگ نه، زیرا به خواص آلات موسیقی بخصوص وابسته است.
یک زبان رسمی یک ساختار مجرد است، ولی یک زبان محلی نه، زیرا بحث و تفسیر درباره قواعد گرامر و دیکته آن باز است.